Awareness Workshop on Energy Efficient Japanese technologies and Best Practices

25th September, 2014 at Bangalore

Organised by

The Energy and Resources Institute (TERI) Institute for Global Environmental Strategies (IGES)

Summary of the awareness workshop on Energy Efficient Japanese technologies and Best Practices,

25th September 2014, Bangalore

An awareness workshop on 'Energy Efficient Japanese technologies and Best Practices' was organised on 25th September 2014, at Hotel Chalukya, Bangalore under the 'MRV and Capacity Building in India Project' being undertaken by TERI, with support from IGES. A summary of the discussions at the workshop is presented below.

Welcoming the participants to the workshop, Mr Prosanto Pal, TERI mentioned that the objective of the event was to raise awareness of Indian stakeholders with regarding to Japanese low carbon technologies related to the metal casting sector as well as regarding JCM scheme and JCM MRV methodologies. He mentioned that TERI and IGES have been working for several years on capacity building of India stakeholders on CDM. Presently, new bilateral mechanisms like JCM are emerging which would be useful for promoting energy efficient technologies among industries in India.

Welcoming the Japanese experts to Bangalore, Dr H Sundaramurthy, IIF (Institute of Indian Foundrymen) thanked IGES and TERI for organising the event. He mentioned that IIF has an MOU with JFS (Japanese Foundrymen Society) and this can be used to develop further cooperation between the two sides.

Mr S Rudre Gowda, a leading foundryman from Shimoga cluster gave an over view of the Shimoga foundry cluster which is located about 280 km from Bangalore. The cluster has about 45 foundries and produces about 65,000 tpa (tonnes per annum) of castings. The cluster produces ductile iron, grey iron and steel castings. Some of the foundries in the cluster are also exporting castings. Mr Ramaswamy, KFA (Karnataka Foundry Association) mentioned out the new foundry park which has come-up in Hospet near Bangalore. The foundries relocating to the new location has an opportunity to adopt new technologies in their operation.

Dr Rabhi Abdessalem, IGES made a detailed presentation about the recently concluded ALCT project, undertaken by IGES and TERI with support from JICA/JST. Under the project, hard technologies from Japan like Gas Heat Pump (GHP) and Electric Heat Pump (EHP) as well as soft technologies/best operating practices in compressed air and induction furnaces were demonstrated by Japanese experts among SMEs in India. He also explained the working of the a proposed bilateral scheme called Joint Crediting Mechanism (JCM). He mentioned that JCM, when signed by Government of India, would provide a good opportunity for financing of new energy efficient Japanese technologies among industries in India. A copy of his presentation is attached.

Mr Junichi Takeuchi, IGES/ Sintokogio expert made a presentation on 'Energy saving measures in casting'. He mentioned that Japan has about 1,500 foundry units and produce about 5.5 million tonnes of castings, whereas India has about 4,500 foundry units producing about 10 million tonnes. He presented details of different fuels consumed in Japanese foundry industry and felt that India should also collect cluster level details of energy consumption. Melting accounts for nearly 72 per cent of energy consumption in a foundry unit. In 1997, 34 per cent of foundry units in Japan use cupola, 63 per cent of the foundry units use induction furnace and 3 per cent of foundry units use

electric arc furnace. In the recent years, there has been a trend to shift to cupola furnace due to electricity shortage with the closing down of many nuclear power plants. He mentioned that Japanese foundry industry has been able to save substantial amount of energy through Kaizen activities. These activities have helped foundries reduce reduction and improve yield leading to energy savings. A copy of his presentation is attached.

Mr Kenji Shiotani, IGES/Ishikawa Malleable Co. Ltd., Japan made a presentation on 'Energy saving operation in foundry'. His company (Ishikawa malleable) is one of the major producers of ductile iron castings for the automobile sector. It producers about 7,600 tonnes of casting per month from two plants – one located in China and the other in Japan. Induction furnaces are used for producing ductile iron of various grades (FG 450, 500 and 600). He outlined various energy efficiency best practices from his company such as differential metal tapping, better matching of melting with moulding operation, marking of the grade on the runners and risers, full power operation, no stoppage for lunch and so on. A copy of his presentation is attached.

The workshop concluded after a question and answer session.

Annexure 1: Agenda of the event

Awareness workshop Energy efficient Japanese technologies and best practices

Chalukya Hotel, Bangalore 25th September 2014, 4:00 – 8:00 pm

Program

and address	
ome address	Mr Prosanto Pal
	TERI, New Delhi
	Dr H Sundaramurthy
	Past President – IIF
ario of Foundry	Mr S Rudre Gowda
tries in Shimoga and alore	Representative, Shimoga Foundry Cluster
	Mr. V. Ramaswamy
	Past Chairman, KFA
view of TERI-IGES	Mr. Abdessalem RABHI, IGES
entation on Japanese	Mr Junichi TAKEUCHI/
ologies and practices	Mr. Kenji SHIOTANI
	IGES, Japan
tance to MSME units	Mr P Ravi Kumar
Ministry of MSME and	Zonal General Manager, NSIC
house/ Discussion	
of thanks	Prof. Ranganath
	Hon Secretary, IIF Bangalore
er	
	tries in Shimoga and alore view of TERI-IGES ct entation on Japanese ologies and practices tance to MSME units Ministry of MSME and house/ Discussion of thanks

New Harmony >> New Solutions"

Energy-saving Measures in Casting

(Mainly Focusing on Induction Furnace Melting)

~ Case of Japan and Her Situation ~

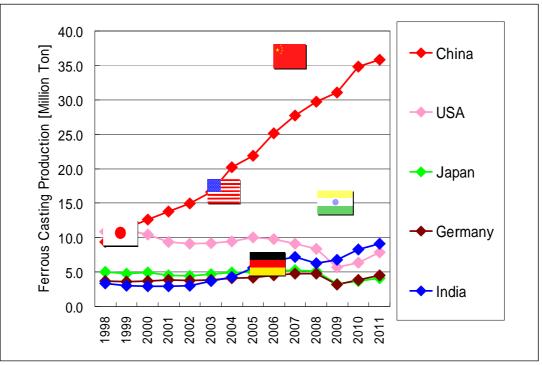
September, 2014 Shintokogio, Ltd. Junichi TAKEUCHI

SINTOKOGIO,LTD.

www.sinto.co.jp

Junichi TAKEUCHI <u>amigotake@gmail.com</u>

- 1973 Completed faculty of science and engineering, Waseda University, Japan. (Castings Res. Lab., Waseda Univ.) Joined Japan Casting Co., Ltd. (Nippon Chuzo Co.,Ltd.)
- 2001 Was dispatched as JICA, JETRO expert to South-east Asia and Mexico for technical guidance. Took his new post at Universidad Autonoma de San Luis Potosi, Mexico
- 2004 Joined Japan Foundry Society, Inc.
- 2009 Joined Sintokogio. Ltd. has worked as adviser
- Other activities: Central Trade Skill Test Commissioners Chief of editorial committee of journal "Casting Journal"


Casting Production Top-10 Countries

40 CACTING DRODUCEDO

I. Unina	China 41,260,000 million tons		6. Russia	4,300,000 million tons		
<u>*</u>	Gray iron: Ductile iron: Steel: Nonferrous:	2,009,500 million tons 10,375,000 million tons 5,395,000 million tons 5,395,000 million tons		Gray iron: Ductile iron: Steel: Nonferrous:	2,198,160 million tons 897,840 tons 731,000 tons 473,000 tons	
2. U.S.	10,008,000 mil	lion tons	7. Brazil	3,343,685 milli	ion tons	
	Gray iron: Ductile iron: Steel: Nonferrous;	3,064,000 million tons 3,841,000 million tons 977,000 tons 2,126,000 million tons		Gray iron: Ductile iron: Steel: Nonferrous:	1,986,733 million tons 812,467 tons 270,302 tons 274,183 tons	
3. India	9,994,000 mill	ion tons	8. Korea	2,340,200 milli	ion tons	
-	Gray iron: Ductile iron: Steel: Nonferrous:	6,864,000 million tons 1,090,000 million tons 1,140,000 million tons 900,000 tons	:	Gray iron: Ductile iron: Steel: Nonferrous:	1,076,600 million tons 652,000 tons 160,600 tons 451,000 tons	
4. Japan	5,474, 008 mill	ion tons	9. Italy	2,213,287 milli	ion tons	
	Gray iron: Ductile iron: Steel: Nonferrous:	2,229,758 million tons 1,635,500 million tons 218,181 tons 1,390,569 million tons		Gray iron: Ductile iron: Steel: Nonferrous:	692,298 tons 469,051 tons 73,658 tons 978,280 tons	
5. Germany	5,466,696 mill	ion tons	10. France	2,046,826 milli	ion tons	
-	Gray iron: Ductile iron: Steel:	2,576,150 million tons 1,698,235 million tons 217,548 tons		Gray iron: Ductile iron: Steel:	734,500 tons 831,600 tons 108,900 tons The 2011 census 5	

Iron Based Casting Production TOP-5 Countries

Rapidly increasing of productions in India and China

Current Situation and Problems Regarding Energy Saving in Each Field

Pig Iron Casting

Energy Consumption of Pig Iron Casting (conversion of calorific value) MJ/t

	Average of 3 pig- organizations and		Average of 9 production lines in 7 foundries		
	Energy consumption	Percentage (%)	Energy consumption	Percentage (%)	
Purchase power	4,558	55.6	5,831	61.0	
Coke	2,118	25.8	2,544	26.4	
City gas	145	1.8	462	4.8	
Liquefied petroleum gas	261	3.2	647	6.7	
Liquefied natural gas	2				
Volatile oil (Gasoline)	19	0.2			
Kerosene	246	3.0			
Light oil	65	0.8			
Heavy oil A	778	9.5	102	1.1	
Total	8,192	100.0	9,642	100.0	

Energy Consumption by Casting Process

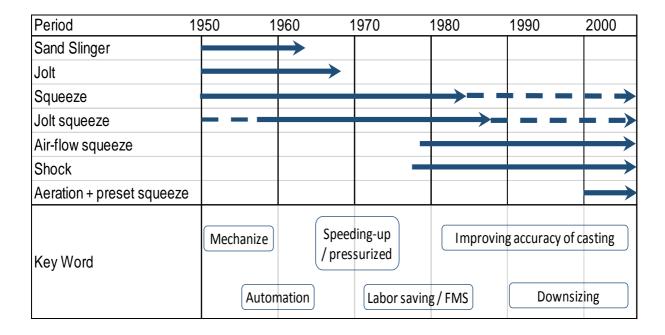
	Energy consumption by process (MJ/t)	Percentage (%)	Percentage (% including "Other")
Material receiving / melting	6,130	72.1	66.2
Sand treatment	880	10.3	9.5
Core molding	359	4.2	3.9
Molding	611	7.2	6.6
Molten treatment / Pouring	157	1.8	1.7
Shake-out mold / cooling	18	0.2	0.2
Fettling	347	4.1	3.7
Sub-total	8,510	100.0	91.8
Others	763		8.2
Total	9,270		100

(conversion of calorific value) MJ/t

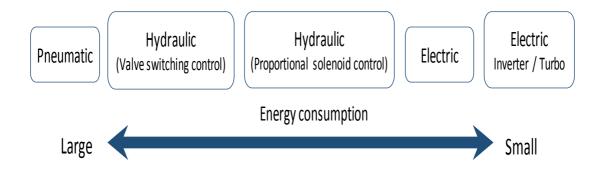
Usage of Melting Furnace

1997 (Unit)

	Less than 3 tons	3 tons or more but less than 10 tons	3 tons or more	Total
Cupola	39	175	26.0	592 (34%)
Induction electric furnace	733	340	25.0	1,098 (63%)
Arc furnace	44	4	5.0	53 (3%)
Total	1,168 (67%)	519 (30%)	56 (3%)	1,743 (100%)


Non-ferrous Casting

- (1) Energy-saving by improving yields
- (2) Improving energy efficiency by energy management technology
 Induction furnace
 Combustion furnace
- (3) Energy-saving for process and facilityMolding processEnvironmental problem


Casting Machine and Equipment

- (1) Cupola melting
- (2) Electric furnace melting
- (3) Molding machine (Mass production=Green sand, self-hardening property)
- (4) Other casting equipment

History of Green Sand Molding Machine

Power Source and Energy Consumption

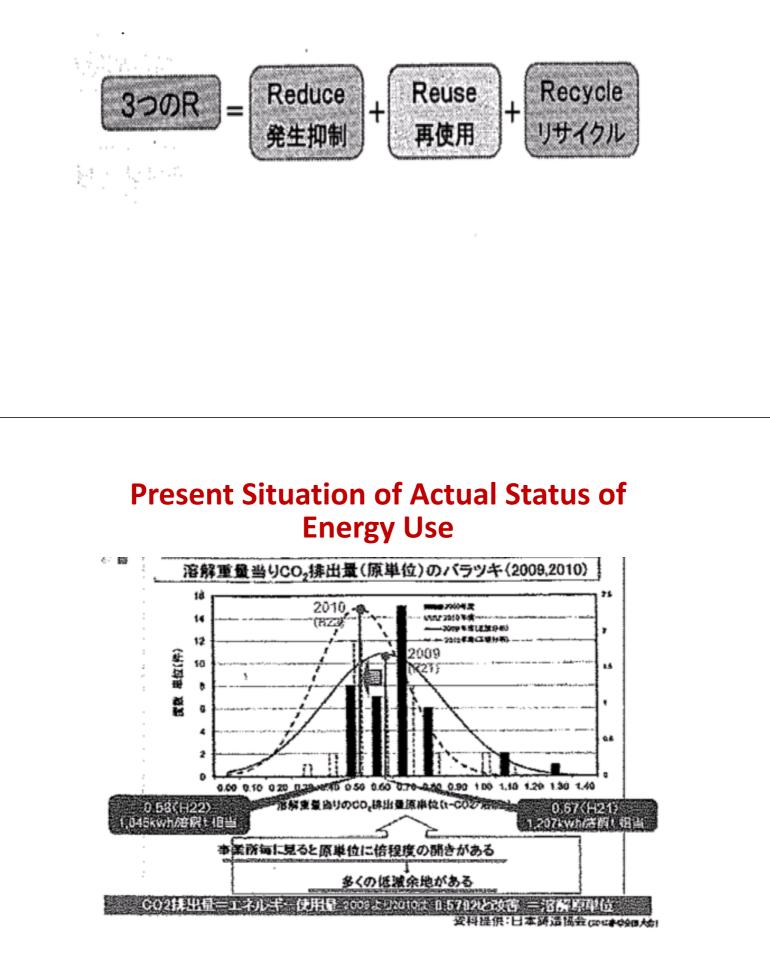
Direction and Technical Development problems (issues) of Energy Saving in Casting

Technology which makes the most of resources and facilitates recycling reuse

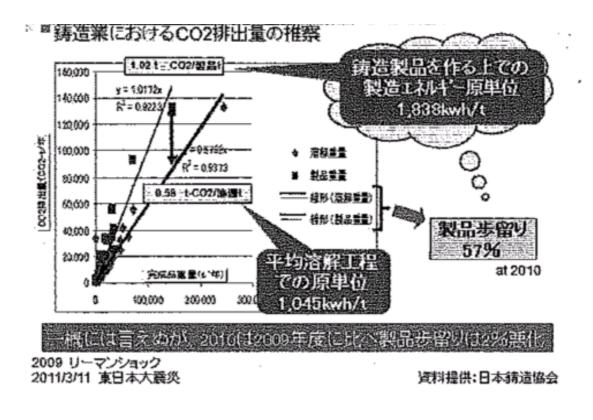
- Technology which minimizes emissions in production process
- Technology for minimizing use energy and using effectively at the maximum

Technology which contributes to establishment of an information society, and construction of high-quality society with safety and security

Recommendations of Problems

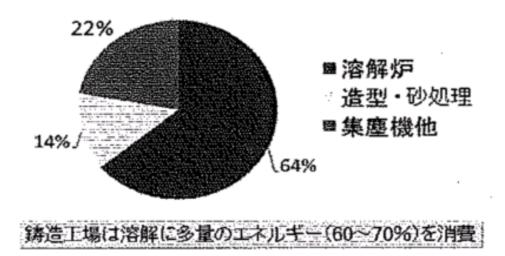

- Gathering of foundries
- Rapid melting and pouring system for one flask
- Measures for improving thermal efficiency

(Example)

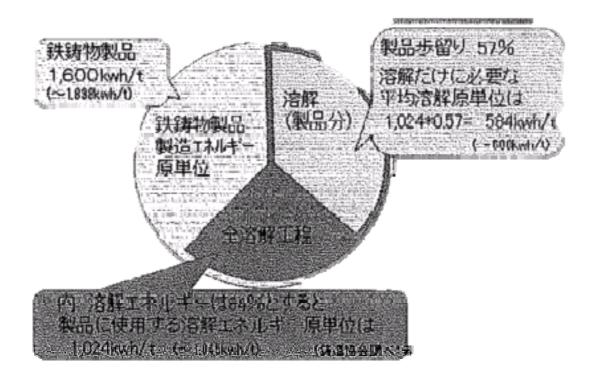

Installation / improvement of furnace cap (cover), control of water-cooled temperature, decrease of melting temperature, thickness of lining, remaining heat of materials, others.

- Melting power setting and review of furnace
- Reduction of power consumption of compressor
- Heat retention and heat insulation of a heat radiation part

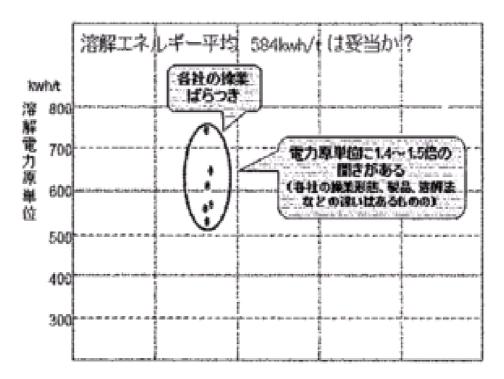
3Rs in terms of Resource Saving



CO₂ Emission in Casting Industry



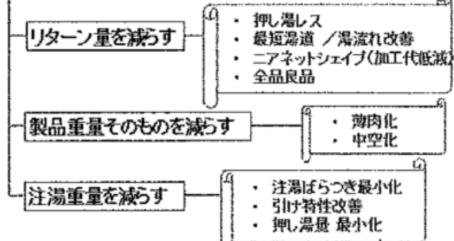
Energy Consumption in Foundry


工程別エネルギー使用量(各社の平均)

Energy Required for Casting

Actual Condition of Melting Energy Investigated

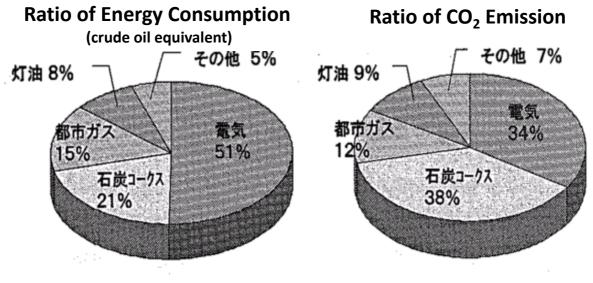
For Reducing Energy Consumption


- (1) Reducing amount of returned
- (2) Reducing product weight itself
- (3) Reducing pouring weight itself
- (4) Melting consumption
 Melting consumption = Theoretical melting energy
 + Operation loss + Equipment loss

 $P = e_0 + Lo + Lm$

 エネルギー消費量= <u>溶解量 t × 溶解原単位 kwh/t</u>

 基本::製品とならない溶湯を溶かさない



Flow of Energy in Melting Process 溶解工程におけるエネルギーロスが『どこ』に『どれたけ』あるかを明確にする 設備ロス 操業日 有効エネルギ バッチ間ばらつ 保温損失 1温图曲-法解谢) (\$)600 集團による故熱 材料投入時のロス (B) ● 生産設備の不整合 など 操業ロス 理論溶解熱量 設備ロス OO kWh/t 384 kWh/t OO kWh/t

Views on Energy Saving

- Energy (Electric, Coal/Coke, Gas, Kerosene, Heavy oil, etc.)
- Viewpoint based on a variety of different condition, situation and circumstances
- How to deal with; oil crisis (shock), resource saving, relation with greenhouse gas, CO₂ emission
- Energy consumption

Comparison of Energy Consumption with CO₂ Emission

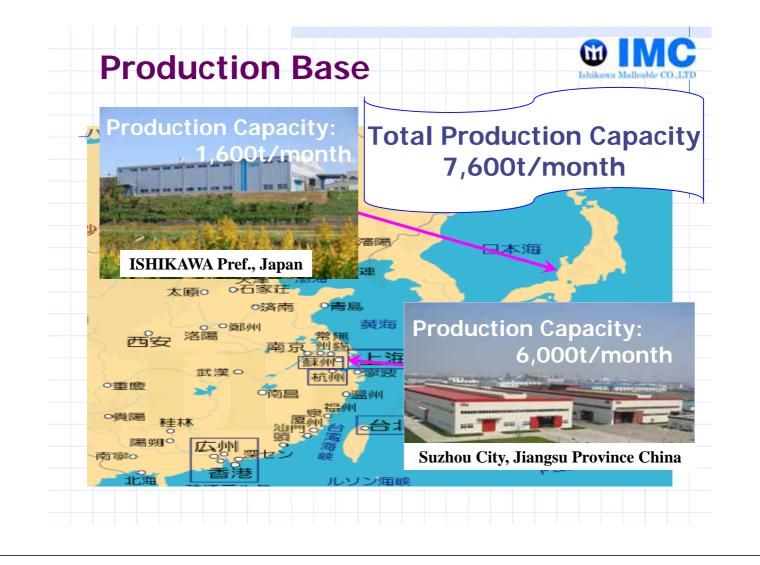
【図4-3】エネルギー使用量とCO2排出量の比較

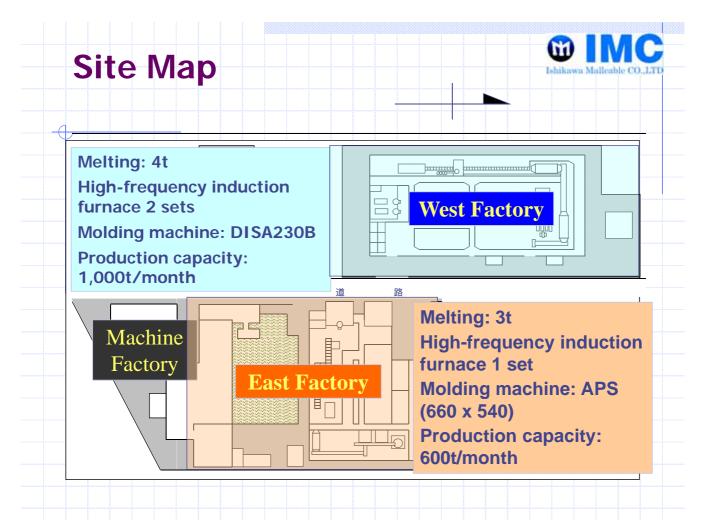
Energy Saving and Capital Investment

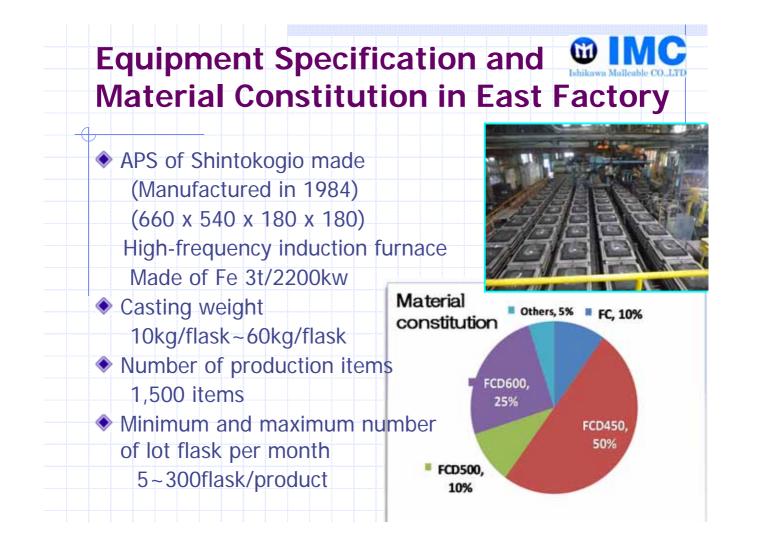
- Large capital (capacity) investment
- Way of operation, strengthening of management
- "Clear goal setting" is carried out by "Participation by all".

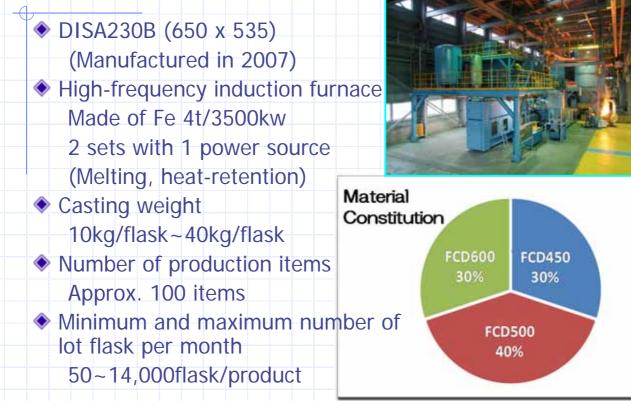
Thank you for your kind attention!

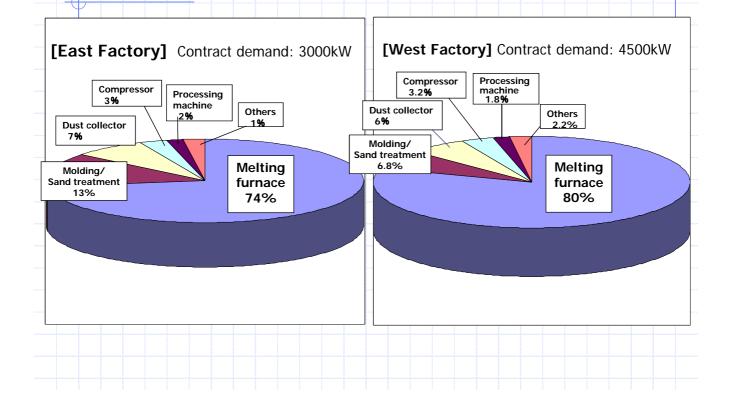
Junichi TAKEUCHI



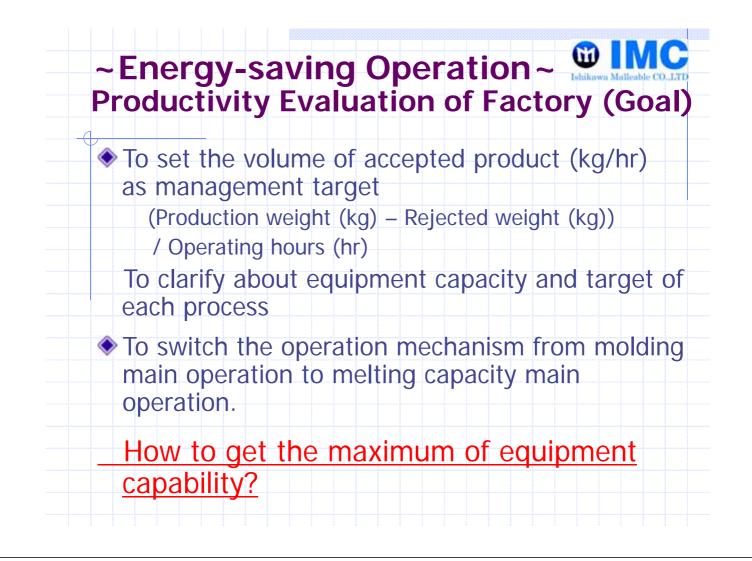

Company Profile

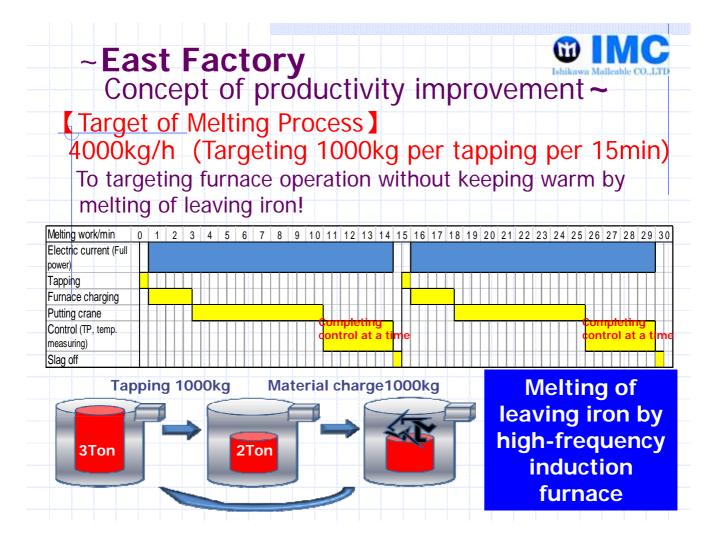

- •Establishment May, 1953
- •Capital 48 Millions JPY
- President Tetsuo SHIOTANI
- •Number of employees 134

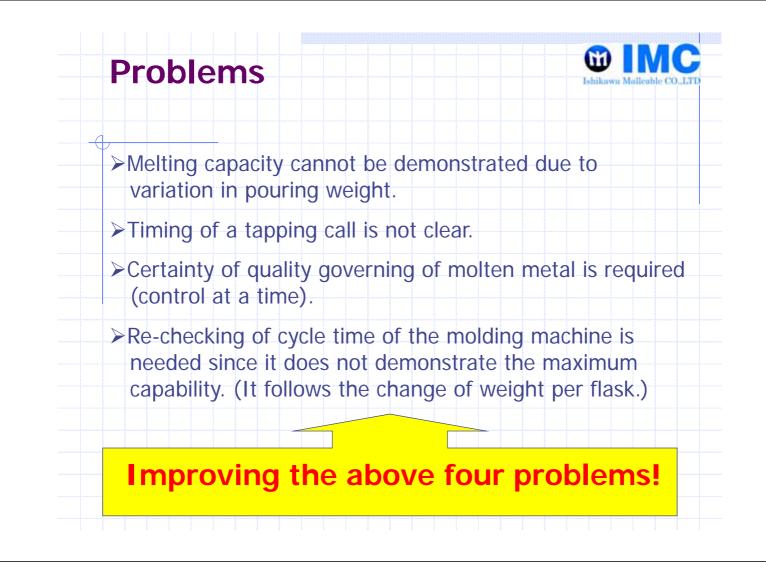

 Business Casting Sec. (Manufacturing of casting) Machinery Sec. (Machining of metals of casting etc.) Import Sec. (Importing or selling of products made in China)



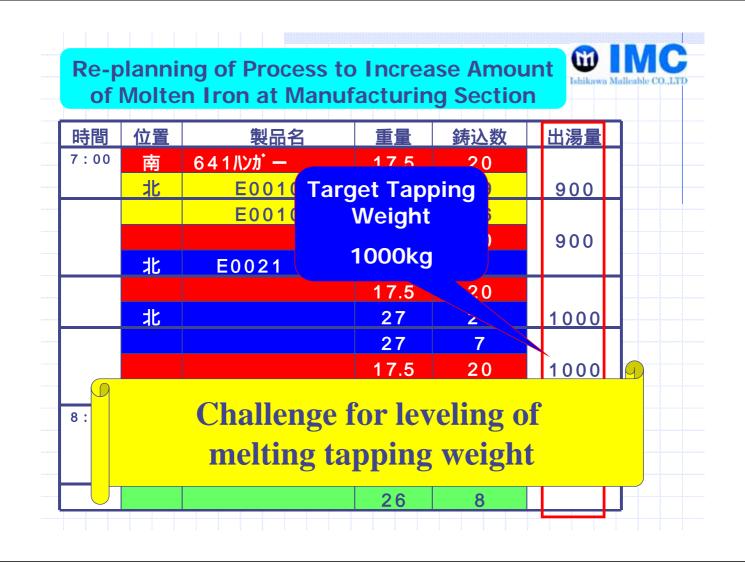
Equipment Specification and Material Constitution in West Factory

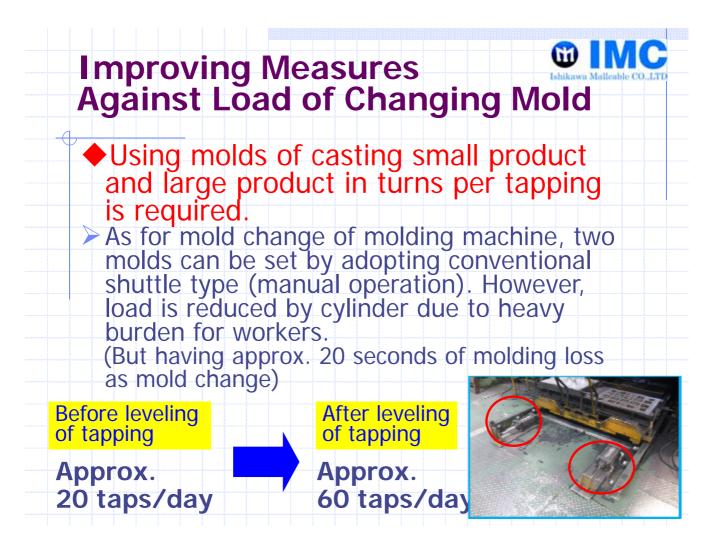



Percenta	ge of CO ₂	emissions	
FY 20	011	FY 20)12
Electric	95.7%	Electric	95.9%
Kerosene (Paraffin)	2.0%	Kerosene (Paraffin)	1.8%
Light oil	0.4%	Light oil	0.4%
LPG	1.9%	LPG	1.9%

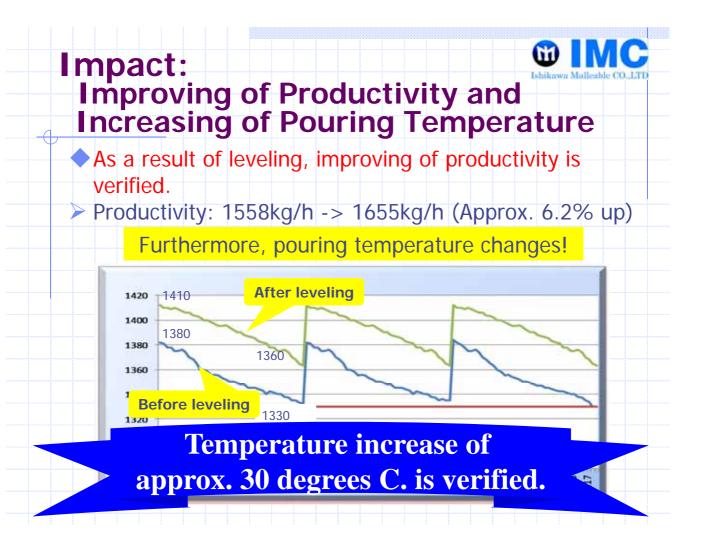

Percentage of Use Power (Power consumption)

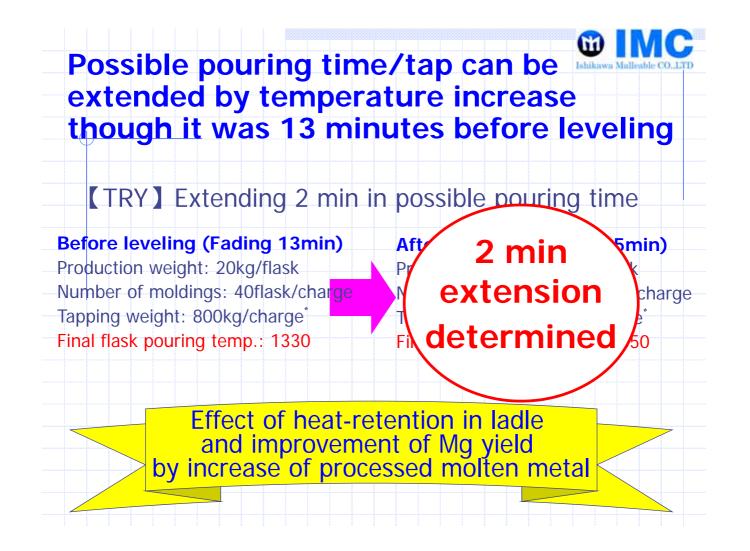
W



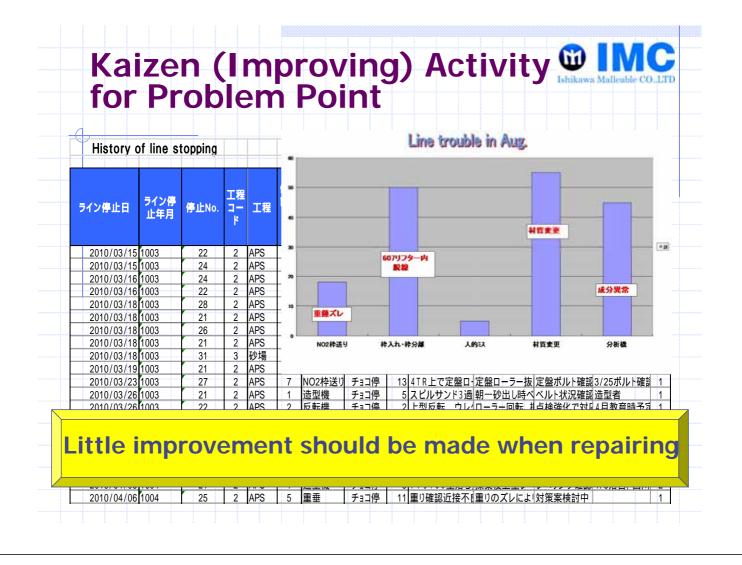


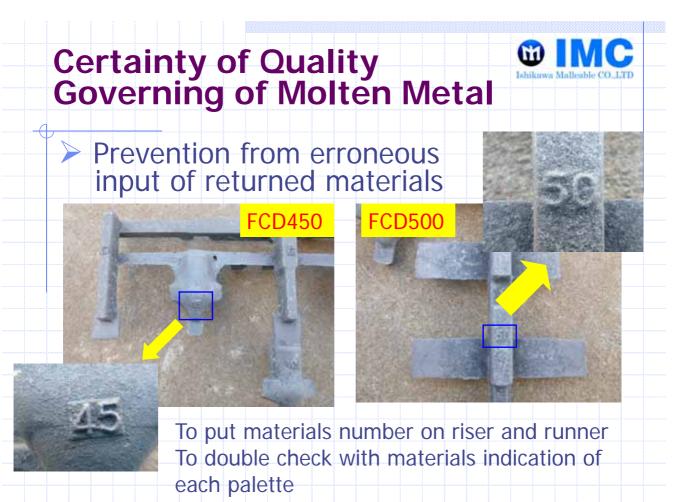
Unstable Melting Operation ^(I) IMC due to Variation in Pouring Weight


Pouring weight kg/flask	Molding capacity flask/h	Weight required kg/hr	Tapping weight kg/tapping	Melting capacity kg/hr	Difference in melting capacity kg/hr	Operation state
15	160	2400	600	4000	1600	Loss of melting heat- retention
 25	160	4000	1000	4000		Melting and molding: full
 ระคราม (1996) (Melting: full, molding: waiting for
35	160	5600	1400	4000	-1600	tapping

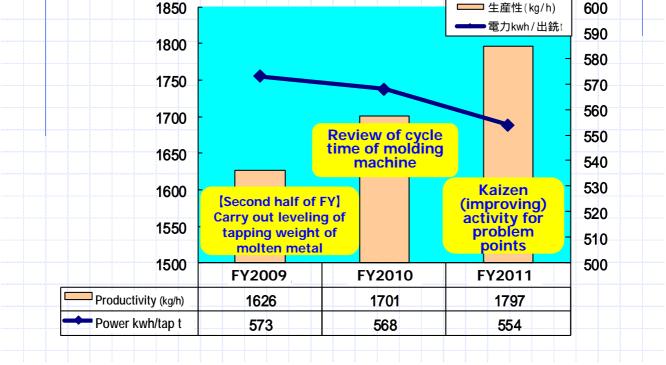

Leveling this variation to 1000kg is needed.

Variation in Cycle Time of Molding Machine

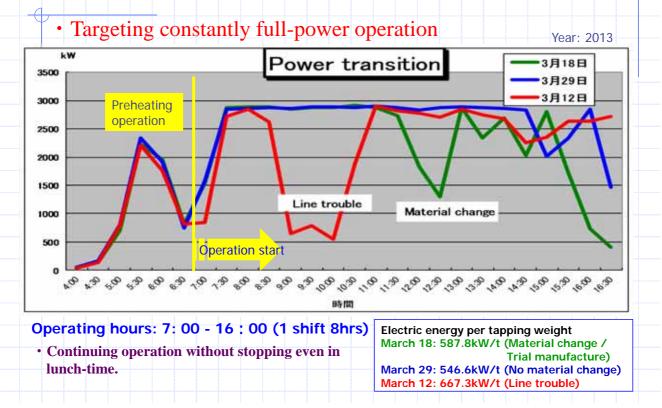

HEM		
1造型機	0 0	O to 建胞 标/h
2 保留語いたかか.	0 0 0	0 158
3 枠合わせ	0 0	0
4 型替え	6 192	632
5 NO1枠送り	0 0	0 575
6 NO2枠送り	0 0	0
7 株会福	0 0	0
⑧湯待ち	3 234	715
合計	4 426	APS5-02571


Control of each process, stop time for molten metal waiting and the number of times of molding-line.

Displaying cycle time in each process of molding-line


	APS	ライン	わた監社	見画面
	璇嫺		脑鞘	
造型機	18.5	秒	18.6	秒
反転機。常整	17.4	秒	17.5	秒
特合せ	18.7	秒	18.6	秒
NII存送り	18.7	秒	18.7	秒
加加幹運り	18.3	秒	18.2	秒
校通	18.5	秒	18.6	秒
特入れ	5.1	秒	5.2	秒

Shortening of cycle time and clarifying trouble point



Transition Graph Indicating

Graph Indicating Demand Transition per Day in East Factory

0			_		
 		m			٢V
\mathbf{J}	U				V
					J

Electric furnace operation at the time of energy-saving operation
Do not keep melting furnace warming, but tap immediately after temperature rising!
Do not cool ladle by increasing each tapping weight as much as possible!
Make a system for working less line stops (equipment, quality, trouble)!
Improve final yield rate (sprue cup, casting plan, leaving iron, and reject, etc.)!
Do not stop lines even when taking a meal or break! Increase tapping weights per day! Working in shifts. Reconsider pre-heating operation! (electric furnace, ladle) Check operating state daily and solve the problem immediately!

Thank you very much for your kind attention.

18/05/2017

Energy Efficient Japanese Technologies and Best Practices

Overview of TERI-IGES project(s)

Rabhi Abdessalem Sep. 25th 2014

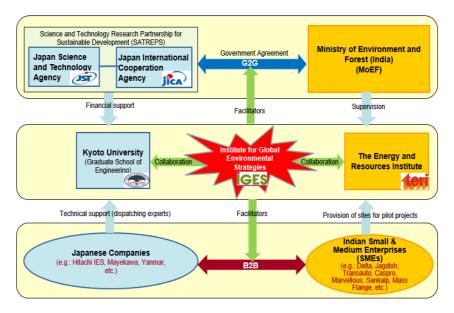
About IGES: Outline

2010, Date: July 7th

Name of the Institute

The Institute for Global Environmental Strategies (IGES)

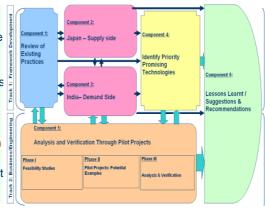
- Establishment March 31, 1998
- Location


Kansai Research Center

[Headquarters]: Hayama, Miura-gun, Kanagawa [Tokyo Office]: Chiyoda-ku, Tokyo, [Kitakyushu Office]: Kitakyushu-city, Fukuoka, [Kansai Research Centre]: Kobe, Hyogo, [Project Offices in Bangkok and Beijing]

IGES-TERI main Objective Research Application of low Carbon Technologies in India (ALCT)

ALCT Project: Research stakeholders


Overall objective

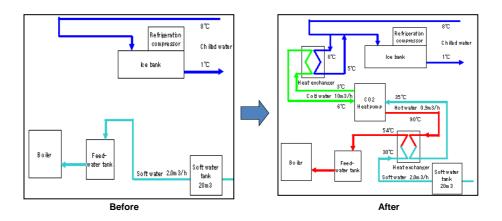
To promote the application of Japanese low carbon technologies at small and medium sized enterprises (SMEs) in India.

Duration: 4 years (May 2010 - March 2014)

Components

- 1- Review of existing practices;
- 2- Study and analyze technologies and relevant conditions of Japanese side;
- 3- Study and analyze needs of technologies and relevant conditions of Indian side;
- 4- Select the appropriate Japanese technologies to be applied in India;
- 5- Analysis and verification through pilot projects implementation_
- 6- Draw lessons learnt from the project and provide suggestions and recommendations.

Summary of selected sites and pilot projects


	Technology	Japanese Companies	Total number of investigated sites	Number of selected sites for pilot projects	Location of pilot projects	SME
Hard Technologies	Gas Heat Pump	Yanmar	11	2	Rajkot	-Delta Technocast -Jagdish Technocast
	Electric heat pump	Mayekawa	13	2	Anand	-Amul
			13		Chandigarh	-Milkfed
Best Practices (Soft	Compressed air system	Hitachi (IES)	13	4	3 in Pune; 1in Noida	-Sankalp -Transauto -Mass Flange -DIC
technologies)	Induction furnace	Expert from Kobe Steel	8	2	Kolhapur	-Marvelous Metals -Caspro Metal

Activities and Results

Results #1 : Demonstration of Electric Heat Pump (EHP)

✤ Application

- Preheating of boiler feed water & precooling of process chilled water
- Dairy, food processing, pharmaceutical, commercial buildings, etc.
- Two pilot projects: 1 in "Milkfed" (Chandigarh) and 1 in "Amul" (Anand)

Results #1 : Demonstration of Electric Heat Pump (EHP)

✤ Benefits

- Reduction in fuel consumption of boiler and electricity consumption of chiller
- Energy savings: 30%-40%

Results #2: Demonstration of Gas Heat Pump (GHP)

✤ Application

- Space cooling applications in industry and commercial buildings
- Two pilot projects: 1 "Delta" and 1 "Jagdish", both in Rajkot (Gujarat)

Before

Results #2: Demonstration of Gas Heat Pump (GHP)

Benefits

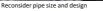
- Switch from electricity to natural gas (NG)
- Energy savings: 35%-45%

Results #3: Best practices regarding compressed air

✤ Application

Four pilot projects: Transauto, Sankalp, and Mass flange (Pune), and DIC (Noida)

Examples of measures which have been taken by SME


Reduce air leakage through installing foot switch

Benefits

Energy Saving: 20% -30%

*

Start the use of efficient air gun

Notes:

-SME have taken almost all the proposed measures in PS reports, except the installation of inveter type air compressor. Additional 10%-20% could be achive by installing inverter type air compressor.

Expected impact of installing inverter type air compressor

		Trans Auto	Iceburg	DIC India	Kansal	Sankalp	BOMBAY	CENTURY RAYON
Primary energy saving	Percentage	17%	22%	15%	25%	17%	19%	17%
	(KWh/year)	53,196	96,624	99,360	135,360	223,994	84,230	79,076
CO ₂ emission reduction (ton/year)		49.5	89	93	125	208	78	73
Approximate pay back period		3 years, 3 months	4 years	3 years, 6 months	2 years, 6 months	3 years	3 years	3 years

Results #4: Best practices in electric induction furnace

Application

• Foundry, sand casting units

Observations

- Process parameters like product yield and rejection ratio have important influence on energy efficiency
- Often data recorded is not linked to improvements in operation
- Awareness on best practices among operators is not high

Major taken activities

- Onsite capacity building to SMEs, and Provide to them training material (in local language) on how to implement 3S/5S activities;
- Training of Trainers (ToT) through training TERI experts, in India and Japan, on best practices so they can trainer SME later on.

✤ Impact

Approximately, up to 20% have been achieved (based on TERI presentation)

Result 5#: Capacity building and awareness raising (level1)

Targeting SME at unit level:

Onsite capacity building for managers and workers during site visits (in total, more than 50 sites visited)

Result5#: Capacity building and awareness raising (level2)

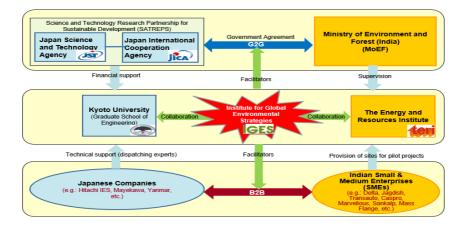
 Targeting SME at cluster/segment level
 Several cluster workshops to introduce technology to business entropreneurs and business associations
 (in total 10 conducted)

Result5#: Capacity building and awareness raising (Level3)

 Targeting Indian experts: Training workshops to Indian experts (In India and in Japan) (in Total 3 (2 in India and 2 in Japan))

Result5#: Capacity building and awareness raising (Level4)

Targeting Policy makers:


Interaction with policy makers through meetings, symposiums, etc.

Summary of Major Achievements

Achievement1: A matchmaking processes with various stakeholders, including private sector, from India and Japan has been established; Most of them are ready to cooperate in the dissemination and follow up activities to be conducted in FY2014, and beyond

Achievement 2: Actual reduction in CO2 emission has been achieved;

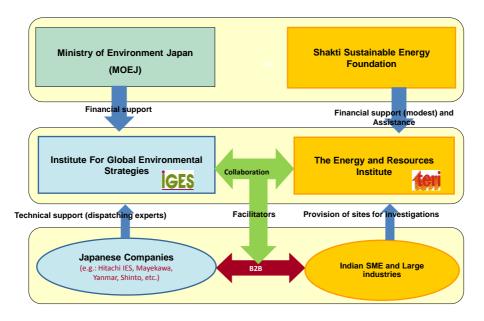
Tech.	ЕНР		GHP		CA		IF	
Sites	Amul	Verka	Delta	Jagdish	Mass flange	Sankalp	Caspro	Marvello us
CO2 emission reduction	33%	40%	47%	43%	25%	30%	20%	20%

Achievement3: SAMEEEKSHA (Indian knowledge sharing platform) added IGES to its member list and has documented about the pilot projects repeatedly. check link:

http://sameeeksha.org/index.php?option=com_projects&task=level&title=iges &id=40

Achievement4: The implemented pilot projects have been widely covered by Indian media, **well evaluated by sponsors (A-)**, and had been disseminated at high level events such as India-Japan Energy forum, Delhi Sustainable Development Summit (DSDS); ISAP 2014, etc., which has attracted the interest of policy maker in India and Japan.

MOEJ (from Japan) and Shakti Energy Sustainable Energy Foundation (from India) are supporting the follow up activities which are taking place in FY2014.



ALCT project Way forwards: Dissemination

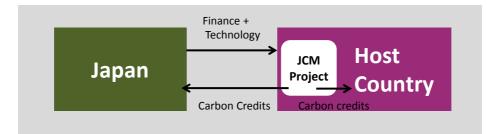
Example of opportunities of scaling up the studied technologies

- **EHP:** 50 Dairy Plants in just two states (Punjab and Gujarat).
- GHP: 120 investment casting industries
- **CA:** ~1200 forging units.
- **IF:** More than 4,500 foundries in India.

Research stakeholders

Example of Programs to be used for dissemination and scaling up

Example of programs to be used for dissemination and scaling up


>E.g. of programs to be used for FS/DS and pilot projects (demonstration)

- MOEJ/GEC: Joint Crediting Mechanism (JCM),
- JICA: Public Private Partnership (PPP),
- ADB-UNEP-GEF: Climate Technology Network and Finance
- UNIDO-GEF:

>E.g. of programs to be used for commercialization (deployment & diffusion)

Examples of program from Indian side	 Financial support through SIDBI Technology Upgradation Fund for textile (TUFS) Technology and Quality Upgradation Support to MSMS (TEQUP) Credit Linked Capital Subsidies Scheme (CLCSS) FPTUFS-scheme for food processing industries BEE can introduce these technologies to the designated consumers (DCs), who are identified under PAT scheme, or by exempting these technologies from import tax under the FEEED program. Energy Service Companies (ESCO)
Examples of program measures by Japanese side	 <u>JBIC</u>: through their crediting J-MRV program. <u>MOEJ</u>: Joint Crediting Mechanism (JCM) (if signed) Japanese makers: Joint venture, Licencing, FDI
Others	SAMEEEKSHA, LCS-RNet, LoCAR-Net, UNEP (CTCN), are important channels through which these technologies could be deployed in India, whether through their funding options or through their information and knowledge dissemination activities to a wide range of stakeholders.

Japan: JCM mechanism

Benefits to Japan

- Contribution to the global GHG mitigation effort
- Market opportunities for Japanese firms

Benefits to host country

- Advanced Japanese technology made available at significantly lower cost
- Reduced fossil fuel dependency

Range of upfront financing for JCM

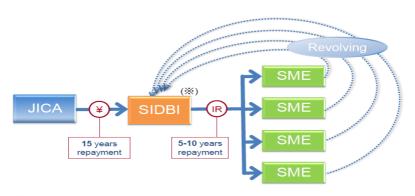
Global Environment Centre (GEC)
 Finances up to 50% of the initial investment cost.

IGES

27

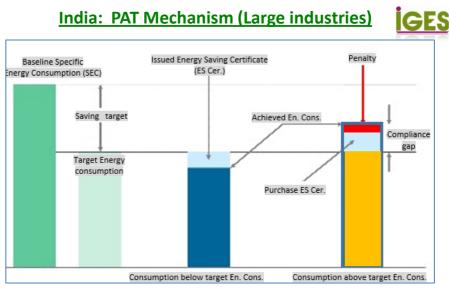
• New Energy Development Organisation (NEDO)

Provides full initial finance, and installed facilities are purchased by project participants at later stage.



Nippon Export and Investment Insurance (NEXI)

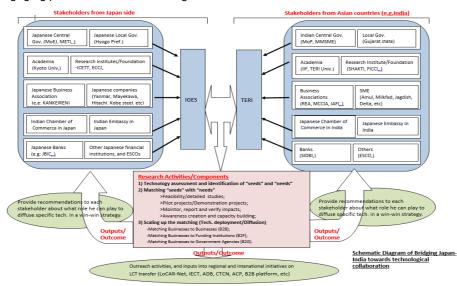
- Provision of trade insurance to JCM projects to cover risks (e.g. non-payment, shipping failure);



(※) SIDBI: Small Industries-Development Bank of India

Note:

Technologies should be included in list of technologies eligible of SIDBI finance

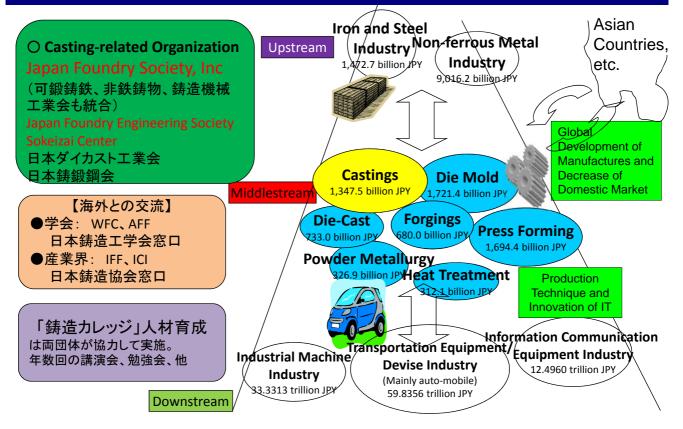


Note:

Only companies in the following sector are considered: Cement, Power, Aluminium, Textile, Pulp and paper, Fertilizer, Iron and steel, Chlor-Alkali

Way forwards: 2015 and beyound

Creation and strengthening of cooperation among various stakeholders from India and Japan to promote low carbon technology application in India, especially through engaging private sector and funding institutions.



Thank you for you attention

Exchange Between Japan and India

September, 2014 Junichi TAKEUCHI Adviser, Sintokogio. Ltd. Chief of editorial committee of journal, Japan Foundry Society, Inc.

Current State Analysis for Formed and Fabricated Materials Industries

Exchange Between Japan and India

- Participation in exhibitions of IIF
- Introduction of World Congress of Investment Castings (2011; Kyoto, Japan)
- Factory (Foundry) tours in each country
- Exchange through GIFA, Metal China, and AFF etc.
- World Foundry Congress 2016 (Nagoya, Japan)
- Japanese company in India, Sintokogio. Ltd.
- Mutual merits but not one-way relationship, win-win relations

Annexure 3: Selected photographs of the event

